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Abstract: The energy gap of photocatalyst is important for photocatalytic processes. As a common 
substrate, the iron-based photocatalyst has attracted much attention due to its high catalytic activity. 

While, the basic functional relationship between the mole ratio of Fe2+/Fe3+ in Fe3O4 nanoparticles 
(NPs) and the energy gap (Eg) is still unknown. this quantitative relationship was built by equations 

in this study. A series of experiments are carried out and the functional relationship is summarized by 
UV-Vis diffuse reflectance spectra (DRS) based on Kubelka-Munk theory. Meanwhile, its 

application for removing the organic dye Congo Red (CR) is examined. Optimum reaction 
conditions are obtained by orthogonal experiments. This study supplies a basic quantitative 

relationship between the ratio of Fe2+/Fe3+ in Fe3O4 NPs and its energy gap. It is essential for designing 
all kinds of novel iron-based photocatalysts.  
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Introduction 
 

With the development of human society, 

people are confronted with the issue of 

environmental pollution resulting from the extensive 

utilization of fossil fuels.[1-3] To solve this problem, 

it is essential to develop non-polluting and 

sustainable energy supply systems. Solar power is a 

renewable resources. As an efficient and green 

catalyst, semiconductors can turn solar power into 

specific energy to drive various chemical reactions. 

[4-7] Among semiconductors, TiO2 is a commercial 

photocatalyst and has been widely used due to its low 

cost, good ultraviolet (UV) absorption ability and 

low toxicity. [8-12] Different TiO2-based 

photocatalysts have been developed, which have 

played a significant role in splitting water, the 

batteries manufacture and the removal of dyes, etc. 

[13] The use of TiO2 in wastewater degradation has 

made great progress. [14] Recently, Ti–Fe oxide 

nanomaterials have been used to remove methyl 

orange dye in water. [15, 16] However, the wide 

energy gap (Eg = 3.2 eV) of TiO2 leads to a weak 

response in visible spectrum (400 nm < λ < 800 nm), 

[17-21] which restricts its application. In recent years, 

iron-based photocatalysts have received extensive 

attention due to their relative narrow band gaps and 

better responses in visible spectrum.[22-25] Abebe 

et al. also found that a Fe-oxide nanomaterial could 

remove pollutant because it has many adsorption 

sites, and it has a very good removal effect with 

maximum adsorption capacity of the adsorbent 

70.422 mg/g. [26] Although iron-based 

photocatalysts have been widely studied, some 

fundamental questions still require explanation, such 

as the relationship between the mole ratio of 

Fe2+/Fe3+ in Fe3O4 NPs and the Eg.  
 

In continuous interest in photocatalysis, [27] 

iron-based photocatalysts have been successfully 

used for CO2 fixation, [28] nitrogen fixation, [29] 

and degradation of dyes [30]. While the relationship 

between the mole ratio of Fe2+/Fe3+ in Fe3O4 NPs and 

its Eg has not been reported. It is a fundamental 

problem in designing and preparing iron-based 

photocatalysts. Therefore, this research mainly 

explores this functional relationship, which can 

supply an accurate energy gap quantitative 

relationship for iron-based photocatalyst research. 

Meanwhile, the application of the photocatalyst for 

removing organic dyes in water was studied to 

provide a reference for iron-based photocatalyst 

application. 
 

Experimental  
 

Preparation of Fe3O4 NPs with different ratios of 

Fe2+/Fe3+ 

 

The Fe3O4 NPs with different mole ratios 

of Fe2+and Fe3+ were synthesized via co-
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precipitation using molysite in which Fe2+/Fe3+ = 

4.5:10. Based on the total concentration of 

molysite (0.30 mol·L-1), the overall concentration 

ratios of Fe2+/Fe3+ (34.5:10 (a), 25.5:10 (b), 

14.5:10(c), 6.9:10(d), 4.5:10(e), 4.1:10(f), 

2.9:10(g), 2.3:10(h)) were obtained by varying the 

amounts of Fe2SO4·7H2O and FeCl3. The required 

amounts of Fe2+ and Fe3+ were dissolved in 6 mL 

of deionized water under argon. The above 

solutions were stirred for 20 min, followed by the 

addition of aqueous NaOH (0.25 mol·L-1). The 

mixtures were then stirred for another 30 min at 

60 ℃. The black suspensions were filtered, 

washed with water three times, and dried for 3 h at 

100 ℃. 

 

Catalytic activity measurements 

 

5 mL of a CR aqueous solution (10 mg·L-

1) was added a defined amount of Fe3O4 NPs (a), 

(e), and (h). The above solutions were stirred at 

room temperature in dark for about 30 minutes 

until the adsorption-desorption reached 

equilibrium. Next, a 2.5 mL sample was taken 

from each solution at a predefined time (1 h and1.5 

h). The suspensions were centrifuged (400 rpm, 7 

min) and the absorbance of the suspensions were 

analysed by UV-vis spectrophotometry.  

 

Results and Discussion 

 

Fe3O4 NPs (a-h) with different ratios of Fe2+ 

and Fe3+ were prepared with concentration ratios of 

Fe2+ / Fe3+ as follows: 34.5:10 (a), 25.5:10 (b), 

14.5:10(c), 6.9:10(d), 4.5:10(e), 4.1:10(f), 2.9:10(g), 

2.3:10(h). The light collecting ability and the Eg value 

of these Fe3O4 NPs and their ability for the removal of 

Congo Red (CR) were then investigated. 

 

Light-collecting ability 

 

The light-collecting ability of catalysts 

can be tested by UV−Vis diffuse reflectance. The 

obtained curves for Fe3O4 NPs (a-h) had a strong 

light response in the range of 300-450 nm (Fig 1), 

which indicated that the Fe3O4 NPs had a good 

response performance in the visible region. 

Meanwhile, the Eg values of these samples were 

determined by UV-Vis diffuse reflectance spectra 

(DRS) based on Kubelka-Munk theory. 

 

 

 

Fig 1: UV−Vis diffuse reflectance spectra of 

Fe3O4 NPs with different mole ratios of 

Fe2+/Fe3+. 

 

Calculation of Eg 

 

Based on the information in Fig 1, the 

different band gap energies (Eg) can be obtained 

through equation (1) from Kubelka-Munk theory 

(Fig 2).31,32 

 

  )1()( EghvAnhv   

 

where α is the absorption coefficient, h is Planck’s 

constant, ν is the light frequency, and A is a 

constant. In particular, different types of optical 

transition semiconductors have a corresponding n 

value. That of a direct band gap semiconductor is 

2 and that of an indirect band gap semiconductor 

is 1/2. So the n value is 1/2 for Fe3O4 NPs. The 

results are presented in Fig. 2
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Fig. 2: Band gap energies of Fe3O4 NPs with different mole ratios of Fe2+/Fe3+. 

 

Equation fitting 

 

To study the quantitative relationship 

between the Eg value and iron ion ratio in Fe3O4 

NPs, their corresponding value was fitted with two 

applicable empirical equations. It was summarized 

in Fig 3 based on the above data. 

 

 

 

Fig. 3: The relationship equations between the 

iron ion ratio and Eg value. 

 

As shown in Fig 3, two equations were 

established by nonlinear fitting, where x is the 

concentration ratio of Fe2+/Fe3+ (mol·L-1), and y is 

the Eg value. The R values reached 0.89 and 0.98, 

respectively, which shows that the two equations 

have good accuracy. Notably, this result indicated 

that a specific photocatalyst based on different iron 

ion ratios of Fe3O4 NPs could be designed and 

utilized in suitable light source. 

 

𝑦 = 1.75 − 0.05 · exp[−0.5((x − 1.45)/0.52) 2] (2)
  

 

 𝑥 ∈ (0.69, 3.45)              𝑅 = 0.89
  

 

In the case of equation (2), with Fe2+ 

concentration increasing gradually, the Eg value 

decreased until the x value was 1.45 and the Eg 

value increased when x was greater than 1.45. 

According to equation (3), different absorption 

wavelengths were examined. The maximum 

absorption wavelengths of Fe3O4 NPs (a-d) were 

708 nm, 712 nm, 730 nm, and 720 nm, respectively. 

This means that the energy in these wavelengths is 

the minimum energy required to activate electrons. 

So if researchers want to design a visible-response 

or ultraviolet-response iron-based photocatalyst, 

equation (2) could be employed to optimize the 

Fe3O4 NPs substrate.  

 

In recent years, many photocatalysts 

based on iron substrate were designed and 

synthesized under the visible-response or 
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ultraviolet-response region. Wang et al. 

synthesized Fe3O4/BiOCl nanocomposites via a 

co-precipitation method, in which the Fe2+/Fe3+ 

ratio (mol·L-1) is 1:1. This nanocomposite showed 

good photocatalytic activity toward RhB 

degradation in wavelength range of 200 to 800 

nm.33 Zhang et al. reported a Fe3O4@MIL-100(Fe) 

photocatalyst [Fe2+/Fe3+ ratio (mol·L-1) is 1:1 in 

Fe3O4 NPs] that exhibited a 99% photocatalytic 

effect to MB degradation under the UV-vis or 

visible light irradiation.34 The two photocatalysts 

based on iron showed a specific photocatalytic 

performance in visible or ultraviolet region. It is 

worth mentioning that these Fe2+/Fe3+ ratios in 

Fe3O4 NPs match with equation (2) which shows 

that the fitting equation is credible.  

 

𝐸𝑔  =  1240/

𝑛                                         (3)  

 

Equation (3), as mentioned in the previous 

paragraph, shows a relationship between the Eg 

value and the wavelength (n). [35] Hence, the 

absorption wavelengths from equations (2) and (4) 

can be examined using equation (3). 

 

𝑦 = 1.43 − 0.007 · exp[ (𝑥 − 0.23)/0.08]         (4) 
  

 

𝑥 ∈ (0.24, 0.45)       𝑅 = 0.98
 

 

In equation (4), the Eg value gradually 

increases with the Fe2+ concentration decreases. 

According to equation (3), the maximum 

absorption wavelengths of Fe3O4 NPs (e-h) are 946 

nm, 905 nm, 879 nm, and 873 nm, respectively. 

This indicates that the energy in these wavelengths 

is the minimum energy required to activate 

electrons.  

 

The difference with the above Fe3O4 NPs 

(a-d) is the different light response range. It has not 

only demonstrated visible and ultraviolet-

responses, but a near-infrared (NIR)-response. 

Thus it has a wider light response range. In the past 

decade, due to the retrievability and the fact that 

the visible–NIR region occupies 95% of the total 

energy of the sunlight, photocatalysts based on 

Fe3O4 NPs have received wide attention.35 They 

have much wider applications in infrared imaging, 

wastewater treatment, and removing organic dyes, 

etc.36-38 According to equation (4), this studies 

indicated that photocatalysts based on iron could 

potentially be applied in the NIR region by 

adjusting the iron ratio in the Fe3O4 NPs. 

 

Application for removing organic dyes 

 

Fe3O4 NPs (a) were taken as an example 

to remove Congo Red (CR). It shows a removal 

rate of 98% for CR after sunlight irradiation for 1.5 

h. As shown in Fig. 4 (a), CR shows a few changes 

after a dark reaction because it can reach 

adsorption equilibrium. After five recycling 

experiments, this catalyst still had good stability 

(Fig 4 b). Meanwhile, the removing CR 

experiment was performed under optimum 

reaction conditions, which were obtained by 

orthogonal experiments. The results are shown in 

Tables 1-3. 
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Fig. 4: (a) Photocatalytic degradation of CR. (b) Catalyst recycling experiments. 

Table-1: Orthogonal experimental design. 

Entry Time (h) Congo Red (mg·L−1) Cat. (mg) 

a 0.5 10 5 

b 1 15 10 

c 1.5 20 15 

 

Table-2: Orthogonal experimental results. 

Entry Time (h) Congo Red (mg·L−1) Cat. (mg) Degradation rate (%) 

1 0.5 10 5 93 

2 0.5 15 10 86 

3 0.5 20 15 97 

4 1 10 10 90 

5 1 15 15 94 

6 1 20 5 64 

7 1.5 10 15 96 

8 1.5 15 5 89 

9 1.5 20 10 97 

 

Table-3: Analysis of the results. 

Entry Time (h) Congo Red (mg·L−1) Cat. (mg) 

K1 92 93 82 
K2 83 90 91 

K3 94 86 96 

R 11 7 14 

 

The reaction conditions for CR 

degradation were optimized via orthogonal 

experiments. Table 1 presents three factors and 

levels namely reaction time (0.5 h, 1 h, 1.5 h), 

substrate concentration (10 mg·L−1, 15 mg·L−1, 20 

mg·L−1) and catalyst amount (5 mg, 10 mg, 15 mg). 

The results in Table 2 show the degradation rate of 

CR under different experimental conditions. Then, 

the optimum experimental conditions are obtained 

by the K (K1, K2, K3) and R value in Table 3, 

which are calculated based on the results in Table 

2. The maximum K value in a single factor 

represents the best reaction conditions under this 

factor.  

 

In Table 3, the maximum K value in 

factors reaction time, substrate concentration, and 

catalyst amount are K3 (94), K1 (93), and K3(96), 

respectively. Therefore, the optimum experimental 

conditions are reaction time (1.5 h), substrate 

concentration (10 mg·L−1), and catalyst amount (15 

mg). Meanwhile, the maximal R value represents it 

is the most important factor among all factors. So 

the maximum R value is 14 in Table 3, which 

represents the catalyst amount is the foremost 

factor in CR degradation. 

 

 

Exploration of possible mechanisms 

 

Compared with this result, Yirga et al. 

studied the effects of different conditions 

influence on the adsorption of methylene blue 

(MB) by Fe3O4 NPs. 39 The plentiful vacant 

surface sites become occupied by dye molecules 

until the system reaches adsorption-desorption 

equilibrium. In this study, after optimizing, 1.5 h 

is suitable for reaching the adsorption equilibrium. 

Basically, the catalysts with a larger ratio of active 

adsorption sites show better adsorption 

performance. In this work, it shows a good 

absorption efficiency at the lowest substrate 

concentration (10 mg·L-1), which indicates that the 

catalyst has a high adsorption site ratio. Therefore, 

the number of vacant surface sites increases as the 

amount of catalyst increases. Based on the optimized 

conditions, CR was removed using three different 

mole ratios of Fe3O4 NPs (34.5:10(a); 4.5:10(e), 

2.3:10(h)). The results show that Fe3O4 NPs (a) 

with a maximum Eg value has a 98% degradation 

ratio. The Fe3O4 NPs (e) with a minimum Eg value 

has a 70% degradation ratio (Fig 5). So the energy 

gap has an impact on the catalytic degradation of 

organic dyes.  
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Fig. 5: The CR degradation ratios using 
different mole ratios of Fe2+/Fe3+. 

 

Different nano-morphology 

 

The nanostructures of Fe3O4 NPs (a, e) are 

shown in Fig 6. For Fe3O4 NPs (a, 3.45:10) and (e, 

4.5:10), the diameter of the nanoparticle (a) is 

about 66 nm, being smaller than that of 

nanoparticles (e) at 75 nm. According to the co-

precipitation method, an increasing Fe2+ 

concentration may restrain the reverse reaction, 

which could generate more Fe3O4 NPs. However, 

more nanoparticles could increase agglomeration. 

So Fe3O4 NPs (a) form larger lumps than Fe3O4 

NPs (e) according to SEM. This result means that 

more Fe3O4 NPs may adsorb more dye molecules 

for a greater contact area, thus leading to good 

performance for removing organic dyes. 

 

XRD 

 

As shown in Fig 7, the synthetic Fe3O4 

NPs (a, 34.5:10), employed to remove CR were 

examined by XRD. The results agree with the cubic 

phases of Fe3O4 NPs. The 2θ and Miller indices of 

30.1°(220), 35.5°(311), 43.1°(400), 57.1°(511), and 

62.7°(440) matched with reference code: 01-088-0315.  

 

 

 

Fig. 7: XRD of Fe3O4 NPs (a, 34.5:10). 

  

 

Fig. 6: SEM images of Fe3O4 NPs (a, 34.5:10) and natural Fe3O4 NPs (b, 4.5:10). 
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Conclusion 

 

In summary, the quantitative relationship 

between the mole ratio of Fe2+/Fe3+in Fe3O4 and 

the energy gap has been investigated fully by 

UV−Vis diffuse reflectance based on Kubelka-

Munk theory. This quantitative relationship was 

successfully built by equations. This work studies a 

light-response region for the photocatalyst based 

on Fe3O4 NPs and it can supply a f undamental data 

for designing all kinds of iron-based 

photocatalysts in catalytic field. Its photo-

degradation properities for CR indicate this ratio 

of Fe2+/Fe3 regulation in Fe3O4 can influence its 

photocatalytic ability. The experimental results 

proves that the quantitative relationship equations is 

reliable for designing iron-based photocatalyst. 
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